脱硝出口与总排口氮氧化物有偏差,原因找到了-青岛天正洁能环保科技有限公司

加拿大28单双算法

欢迎光临青岛天正洁能环保科技有限公司官方网站
专注于烟气低温脱硫脱硝一体化
承接国内各类脱硫脱硝工程项目
  • 详细信息
  • 您现在的位置:加拿大28单双算法 > 最新资讯
  • 脱硝出口与总排口氮氧化物有偏差,原因找到了

    返回列表来源:天正洁能          发布日期:2020/1/7    |    加入收藏关注:

    引言
    近年来由于我国雾霾天气愈发严重,国家和地方政府加大控制烟气排放污染物力度,提出一系列史上最严格的排放标准。早在2011年7月发布的《火电厂大气污染物排放标准》(GB13223-2011)中,对不同地区、不同燃煤机组的NOX排放进行了严格的规定,其中重点地区排放标准要求氮氧化物≤100mg/Nm³。2014年9月国家三部委又下发《煤电节能减排升级与改造行动计划(2016-2020年)》,要求到2020年,现役60万千瓦及以上燃煤机组、东部地区30万千瓦及以上公用燃煤发电机组、10万千瓦及以上自备燃煤发电机组及其它有条件的燃煤发电机组,改造后大气污染物排放浓度要求基本达到燃气轮机组排放限值,即烟尘≤10mg/Nm³、SO₂≤35mg/Nm³、氮氧化物≤50mg/Nm³。这就对脱硝装置的达标排放提出了更高的要求,目前已经投运的SCR脱硝出口、总排口都设置有CEMS在线监测仪表,其中总排口的CEMS在线测量数据上传至当地环保部门。
    在实际运行过程中,也逐渐暴露出一些较为普遍的问题,如:烟气流场分布均匀性、流速和烟温控制、AIG喷氨分配、催化剂性能、CEMS在线测点布置等,影响机组的安全、稳定运行,同时也给节能减排工作带来困难。
    本文通过对某厂2号机组脱硝运行中经常发生的SCR出口与烟囱入口测量NOx浓度值“倒挂”问题(即总排口测量值大于SCR出口测量值产生的偏差问题)进行简单分析,便于发电企业及时排查问题来源,优化脱硝系统的日常运行管理。

    概述
    1系统概况
    某厂2号机组为660MW超临界直流燃煤机组,脱硝系统采用低氮燃烧和选择性催化还原法(SCR)工艺,高含尘布置,即SCR反应器布置在锅炉省煤器出和空气预热器之间,不设旁路系统,还原剂为液氨。设计入口NOx为250mg/m3,脱硝装置安装了备用层催化剂,即目前为“2+1”层催化剂。

    2系统控制遇到的主要问题
    1)、脱硝出口浓度分布均匀性、氨逃逸
    在570MW负荷下,脱硝A、B侧出口各测孔不同深度NOx浓度和氨逃逸量差别较大,如图1所示。

    图1 脱硝A侧出口NOx浓度分布(570MW)

    图2 脱硝A侧出口氨逃逸分布(570MW)
    由图1、图2可知,脱硝A侧出口各测孔NOX浓度分布均匀性差,NOx浓度相对平均标准偏差为52.8%(其中,部分测孔的深度3处NOx浓度非常大,且对应的喷氨支管原始开度均处于最大状态,优化调整过程中,无法对测孔的深度3处NOx浓度进行调平,初步判断造成这种现象的原因是对应的喷氨支管堵塞)。氨逃逸平均值为4.9ppm,且多数测孔氨逃逸浓度均超过设计值2.5ppm。
    脱硝B侧出口NOx浓度及氨逃逸分布见图3、图4。

    图3 脱硝B侧出口NOx浓度分布(570MW)

    图4 脱硝B侧出口氨逃逸分布(570MW)
    由图3、图4可知,脱硝B侧出口各测孔NOx浓度分布均匀性差,NOx浓度相对平均标准偏差为78.0%,氨逃逸平均值为2.9ppm。
    2)、空预器压差
    该厂2号机组于2016年12月完成超低排放改造脱硝系统新增一层催化剂。2017年11月,2号机组氨耗量逐渐增大,空预器压差也有上升的趋势,2018年1月初,560MW工况条件下,A、B侧空预器压差分别上升至1.8KPa、2.5KPa。
    经喷氨优化调整后,空预器压差变化如图5所示。

    图5 空预器压差变化(2018.01.08-2018.01.19)
    从图5可以看出(红色代表机组负荷,蓝色代表A侧空预器压差,绿色代表B侧空预器压差),通过喷氨优化调整试验,使得氨逃逸浓度、空预器压差得到明显的降低,其中A侧空预器压差由1.8Kpa降至1.2Kpa,B侧由 2.5Kpa降至 1.8Kpa(560MW负荷),有效解决了空预器压差大的问题。
    3)、倒挂
    目前脱硝装置运行中脱硝出口与总排口氮氧化物浓度存在偏差,SCR反应器出口NOx浓度均值较烟囱总排口NOx数值偏低10-15mg/m3,导致氮氧化物浓度产生 “倒挂”问题。
    通过对比某一天脱硝以及脱硫CEMS在线数据,脱硝A、B侧出口均值较脱硫出口低12mg/m3,如图6所示。

    图6 氮氧化物浓度分布曲线
    3原因分析
    1)、在线表计问题
    电厂在脱硝反应器入口、出口以及总排口均安装有CEMS在线测量仪表,便于对污染物排放的实时监控,氮氧化物采用抽取法单点连续测量,并根据O2含量折算成标况下数值。
    通过标气对各测点CEMS装置进行校验比对以及使用已校验的便捷式烟气测试仪(NOVA PLUS多功能烟气分析仪)对CEMS装置尾气测量比对(差值为1-2mg/m3),排除CEMS在线仪表测量误差造成的影响。
    2)、脱硝出口截面NOX浓度分布均匀性差、测点布置问题
    脱硝使用的催化通道横截面积过大,无法达到NOx、氧均匀分布,无法将催化还原反应达到最大的结果。
    根据上面脱硝出口NOx浓度分布数值可以看出,靠近烟道中心位置的NOx浓度较高,依次向两侧递减,同时在同一测孔截面上不同深度的NOx浓度分布也不均匀,各测点不同深度的浓度值差异较大。
    CEMS在线取样点布置偏离烟道中心,且只有一个深度的测量值,代表性较差,在脱硝实际运行中烟气流场不能做到完全分布均匀,只有单点测量的CEMS数值是造成脱硝出口NOx浓度较总排口低(即倒挂)的主要原因。
    3)、运行控制方式
    目前机组运行中的脱硝控制方式普遍采用脱硝出口NOx浓度为控制点来保证氮氧化物浓度排放达标,这种控制方式也会导致倒挂现象的产生。而且如果仅考虑SCR反应器出口浓度的变化,而忽略SCR反应器进口NOx浓度过高,一味将出口浓度设定偏低的话,有可能会超出催化剂的脱硝能力,容易造成喷氨过量、催化剂提前失效、空预器堵塞等。

    4解决方法
    1)调整NOx出口测点位置,增加在线取样点,接近烟道截面中心位置有利于测量准确,根据不同机组烟道截面位置不同,不能一概而论选择定值进行在线取样点的安装。
    2)定期对脱硫脱硝的进出口NOx浓度进行比对,结合试验数据,掌握机组脱硝系统出口、总排口断面的NOx浓度分布情况,及时调整在线测点的位置或者仪表。
    3)通过喷氨优化调整试验,修正SCR反应器出口NOx浓度值、改善NOx浓度分布均匀性,避免脱硝运行中烟气流场的不均匀分布,导致在线采样点的CEMS示值误差。

    4)综合脱硝效率和脱硝出口NOx浓度值因素,合理调整机组脱硝装置的运行控制。

    燃煤电厂、焦化、钢铁、水泥、电力等行业烟气脱硫脱硝脱白除尘设备厂家可选择青岛天正洁能环保科技有限公司更多详情请点击官网:www.heibaiwl.cn查询!

    申明:本文章内容来自中国大唐集团科学技术研究院网站。著作权归原作者赵晓阳所有,如涉及作品侵权问题,请与我们联系,我们将及时处理!

    加拿大28单双算法

    已经是第一篇了!下一篇:燃气锅炉超低排放改造实践

    青岛天正洁能环保科技有限公司 版权所有 Copyright © 2014 备案号:鲁ICP备14006185号-1
    联系人:李经理 手机:18678973766 座机/传真:0532-85587222 QQ:2496812696
    地址:山东省青岛市即墨区中国汽车产业新城(解放三路9号)
    友情链接:
    加拿大28网页精准计划 幸运飞艇滚雪球公式技巧 加拿大28预测app 幸运飞艇官网 加拿大28神算法 幸运飞艇实战个人技巧 加拿大28单双算法 幸运飞艇官网 幸运飞艇官网 加拿大28网页精准计划